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Fig. 2. Difference Fourier section at z=0.25 for PusSi 3. 
Contours as in Fig. 1. 

thus,  in the  overlapping region, too much  electron 
dens i ty  was removed.  

All calculations were performed with an IBM 7090 
or 7094 with programs wri t ten  by  the  authors.  We wish 
to t h a n k  Mr. V. O. Struebing for prepar ing the speci- 
men. 
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Anomalous  Transmiss ion  of X-rays  in an Elastically Deformed 
Non-Isotropic  Crystal 
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A point source of X-rays placed before a slice of dislocation-free germanium produces on a 
photographic plate behind the slice a picture that is characteristic of the anomalous transmission 
of the X-rays. The change in this picture due to bending of the germanium slice is explained 
theoretically in this paper. The characteristic features of the change are related with the fact that 
germanium is an elastically non-isotropie material. 

Introduction 

The aim of this paper is to account for certain 
phenomena connected with anomalous transmission 
of X-rays through elastically deformed perfect crystals 
that have been observed by van Bommel (1964) in 
this laboratory. In his experiments a thin slice of a 

disl0cati0n.free germanium crystal was irradiated with 
X-rays from a point source located near the surface 
of the crystal. A photographic plate some distance 
away from the opposite surface then clearly indicates 
the directions in which anomalous propagation of 
X-ray energy is possible through the crystal. In 
particular, if the [Ill] axis of the crystal is perpen- 
dicular to the surface, a picture with sixfold symmetry 
is obtained, which reveals anomalous transmission of 
X-rays along (220) planes of the germanium lattice. 
Van Bommel observed that bending of the crystal 

results in a characteristic change of the picture on 
the photographic plate as a result of increased absorp- 
tion of the X-rays. For instance, bending can destroy 
the sixfold symmetry of the picture and can produce 
apparent threefold symmetry. It will be shown in 
this paper that these experimental results can be 
understood from the general theory developed in a 

previous paper  (Penning & Polder,  1961) and t h a t  they  
are in t imate ly  connected with the  cubic anisot ropy 
of the tensor of the elastic compliance of germanium.  

Resum6 of the general  theory 

In our previous paper it was emphasized that 
anomalous transmission of X-rays is connected with 
the fact that electromagnetic energy cannot propagate 
as a plane wave in an infinite medium with a dielectric 
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constant varying periodically in space. Generally 
speaking, a mode of propagation will be a super- 
position of plane waves, one of which will predominate 
for an arbitrary value of its wave vector K. If this 
wave vector K is such that  it very nearly satisfies 
the condition for Bragg reflexion at one particular 
lattice plane (hkl), two plane-wave components will 
predominate in the mode. The second plane-wave 
component will have the wave vector K ' =  K-Khk~, 
where Khk~ is 2~ times the reciprocal-lattice vector 
characterizing the lattice plane (hid). If we write 
Kh~=2b,  the Bragg condition is satisfied if K . b - b  2 
= 0. In that  case the ratio ~ of the amplitude of the 
plane-wave component K' over that  of component K 
can be either 1 or - 1 .  The latter sign corresponds to 
a mode of propagation in which the nodes of the 
electric field E of the X-ray coincide with the reflecting 
planes (hkl), at least if the polarization of E is chosen 
to be parallel to these planes. Such a mode suffers 
the minimum possible absorption and produces the 
phenomenon of anomalous transmission. I t  can 
propagate with little attenuation along the plane (hlcl) 
and escape at the end of the crystal by splitting into 
two plane waves with wave vectors K and K'. 

If the Bragg condition is not exactly satisfied the 
ratio ~ is given by: 

4 ( K . b - b . b ) =  V1(~2-1)/~ --- 4A (1) 

where Vl=(o~/c) 2 times the Fourier component Kh~ 
of the dielectric constant of the material; it is a 
negative quantity of the order 1013 cm -2. c is the 
velocity of light in vacuum, co the angular frequency 
of the X-ray. 

The modes with ~ 4 : -  1, i.e. A 4:0, suffer consider- 
ably more absorption than that  with ~ = - 1 ,  and 
the more so the greater the deviation of A from zero. 
Intense anomalous transmission therefore only occurs 
for X-rays in a mode with A ~ 0. 

In our previous paper we have shown that  when 
an X-ray beam in a given mode propagates inside 
a bent crystal, the mode parameter ~ or A will not 
be constant, but will change in a predictable way 
if the strain, or rather the displacement, in the crystal 
is a known function of x, y and z. Equation (22) of 
that  paper states that  

d A =  -ad l (c2 /op)[ (K-2b) .Vr] (K.Vr) (v .b  ') (2) 

where dl is a line element in the direction of the group 
velocity of the mode, a -1 the absolute value of the 
group velocity, b'  the value of b before deformation, 
and v the displacement vector due to deformation. 
The value of dA/dl must be calculated with the aid 
of the local values of a, K, b and v on the path of 
the X-ray beam. 

A non-vanishing value for dA/dl will make it 
impossible for a beam to traverse the entire crystal 
with minimum possible absorption, since only for 

that  part  of the path for which A = 0 is the minimum 
absorption situation obtained. Therefore, only those 
beams for which the right-hand side of (2) equals 
zero in the deformed crystal will not suffer a decrease 
in (anomalously transmitted) intensity on bending. 
The quantity 

[ (K-  2b). V r] (K. ~Tr) (V. b'),  

which is a measure of the intensity decrease on 
bending, can be written in a different way. Since 
K is near to Bragg reflexion anyhow and since, for 
use in equation (2), K and b can be considered as 
constants, we write 

K - d ' + b ' ,  K - 2 b ' = d ' - b '  (3) 

where d' is the projection of K on a plane parallel 
to the lattice planes (hkl). Incidentally, the direction 

Khkt 

Fig. 1. Defini t ion of vectors b and  d. 

of d' is also the direction of propagation of a beam 
with A = 0. For a beam with A 4= 0 it is still the direc- 
tion of the projection of the path of the beam on 
a plane parallel to the reflecting planes. Then (2) can 
be written as 

( w/ac 2) dA /dl = 
[(b' .Vr)(b' . V r ) -  (d'. Vr)(d' .Vr)] (v.b') . (4) 

This paper will contain the evaluation of (4) for a 
thin slice of germanium, cut from a single crystal 
in an arbitrary direction, elastically bent in an 
arbitrary direction, in which an X- ray  beam 
propagates with a vector d' of arbitrary direction 
in a (220) plane. In particular we shall be interested 
in the case where a [111] direction is normal to the 
surface of the slice and in the propagation direction 
d'  for which (4) equals zero. 

The elastic deformat ion 

In this section we shall not t ry  to solve the general 
problem of the elastic bending of a thin slice of solid 
material characterized by an anisotropic tensor of 
elastic compliance. The solution strongly depends on 
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the  boundary  conditions, e.g. on the precise way in 
which the bending moment  is applied. For the evalua- 
t ion of (4) one needs only the displacement  vector v 
as a quadrat ic  funct ion of the  coordinates x, y, z. 
For  this  we need the tensors of the s t ra in  and  stress 
as a l inear  funct ion of x, y, z. 

Take as the  origin of the x, y, z-system a point  Q 
somewhere in the slice, f ixed half  way between its 
front  and  back surfaces. Bending will  cause a stress 
tensor P,  which, to the extent  t ha t  i t  is l inear  in the 
applied moment ,  will  be wr i t ten  as a power series 
in x, y, z: 

p = p(o~ + p(x) x + p(y)y  + p(z)z + . . . .  (5) 

Similar ly  the result ing s t ra in  will  be wri t ten  as 

e k , = ½ ( ~ v ~ / S x , + S v d S x ~ ) = e ~ ° ) + e ~ ' { ) x m +  . . . .  (6) 

Here x~ is wr i t t en  as a general  symbol  for x, y, z and 
summat ion  over subscripts occurring twice is implied. 
e~) is the s t ra in  tha t  would result  from a homogeneous 
stress p(m). If  a s imilar  power series for the displace- 
ment  v is used, the equations (6) uniquely  determine 
the terms quadrat ic  in x, y, z of tha t  series. One 
easi ly checks the va l id i ty  of 

v m = v ~ )  + v~)xk + [ e ~ - - ½ e Y ) ] x k x z +  . . . .  (7) 

Inser t ing (7) into (4) we f ind 

, ' , ' ' ( m ) _ _  , ' ' m )  ( o g / a c ~ ) d A / d l = b m ( b k b z + d ~ d l ) e k ~  2bzdkd~e~l  • (8) 

We have not  yet  specified the directions of the 
x, y and z axes. From what  follows it  is of advantage  
to take  the z axis perpendicular  to the slice in the 
point  Q. The boundary  conditions for the stress in 
a th in  slice then  require tha t  p~,  p~y and p= and thus 
also ~(k) ~(k) and  ~(k) are zero. Fur thermore  we shall  

1"2X , l " z y  I"ZZ 

argue la ter  tha t  if the bending moment  is applied 
in  a symmet r ica l  way  on a specimen of symmetr ica l  
shape, so tha t  Q can be chosen in a point  tha t  shows 
s y m m e t r y  wi th  respect to inversion in the plane of 
the specimen, p(x) and p(Y) also vanish.  For such a 
choice of Q, only e(~) occurs in (8) and it  can be cal- 
culated from the remaining stress components 
p(z) ~(~) p(~) A fur ther  s implif icat ion is obtained if 

x x ,  l ' x y ,  y y  • 

one chooses the x and y axes in  the directions of the 
normal  stresses contained in p(z), i .e.  so tha t  ~(~)=0. l " X y  

I t  is of some interest  to consider the shape of the 
surface of the slice near  Q. I t  is given by  v~ as a 
quadrat ic  funct ion of x and y. Taking m = z in equat ion 
(7) and  pu t t ing  e ( x ) = e ( y ) = O  one finds 

v~ = - ½ x ~ e ~ )  (k, 1 # z) . (9) 

Our choice p ( ~ = O  does not necessari ly imply  e(Z~ = 0. 
Therefore, the geometrical  direction of bending in Q 
does not necessari ly coincide with the directions of 
normal  stresses ~-x~ ~(~) and  p(~. Also, even for a sym- 
metr ica l  bending apparatus,  neither of these directions 
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can necessari ly be direct ly inferred from the symmet ry  
of the exper imenta l  set-up. 

Transformations 

Expression (8) can be expressed in terms of p with 
the aid of 

e = s p  (10) 

where s is the tensor of the elastic compliance. The 
calculations are complicated by  the fact  t ha t  the 
components of s are only simple in a sys tem of cubic 
axes, a, b, and c. Since in (8) we also need the  x, y 
and z components of the vectors b '  and  d '  we shal l  
introduce three systems of axes:  

The x, y, z (stress-) sys tem 
for which subscripts k, l, m, n are reserved. 

The a, b, c (crystal-) sys tem 
for which subscripts g, h, i, j are reserved. 

The ~, ~, $ (X-ray-) sys tem 
for which subscripts 2,/~, v, z are reserved. 

The ~ axis is chosen in  the b '  direction, the $ axis 
in the d '  direction. In  order to restr ict  the number  of 
symbols,  al l  physical  vectors or tensors, if represented 
in different systems, will  be dis t inguished by  the  
use of different  types  of subscripts only. 

Summat ion  over subscripts occurring twice only 
will  always be implied. The orthogonal t ransformat ions  
A and B relate the systems:  

x~ = A ~gxg; xk = Bk~x~ • (11 ) 

Vector components t ransform as (11), tensors such 
as e and p as 

ekz = A ~ g A  zhegh • (12) 

In  order to evaluate  the components of s in the stress 
(x, y, z) system, we write s as the sum of an  isotropic 
par t  I ,  which has the same appearance in all coordinate 
systems, and a par t  K, which is typica l  of the cubic 
elastic anisotropy and which looks simple in the 
a, b, c sys tem of cubic axes only (Table 1): 

Kab, ab = Kbc, bc = Kca,  c a  = K ,  (13) 

all other components zero. 

Table  1. T h e  t ensor  s, i n  the cub ic  s y s t e m  o f  a x e s  

The part I is invariant for coordinate transformation. 
(Remember the factor ½ in the definition of the strain.) 

aa 11 I9. I2 
bb 12 I 1 12 
Cc 1 2  1 2  1 1  

a b  1 1  - -  1 2  + K 

bc 11 -- 12 + K 
ca 11 -- 12 + K 

I t  follows tha t  
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e~ ,=( I~ . rnn+K.~A~aA~aAmoAnh)  pmn. (14) 
g4:h 

Rewri t ing the  res t r ic ted  summat ion  as an unrestr ic ted 
summat ion  minus a sum with  g = h  we have 

s~, mn= I~,  ,~,,+ K6~m6~,,-K.~,  A~oA~gAmgA~o. (15) 
g 

z i 

// 

v x 

Fig.  2. The  Z axis is perpendicu la r  to the  slice. Or ien ta t ion  
of the  [111] axis is shown.  The X - r a y  p ropaga tes  anom- 
a lously  in the  ~ direct ion in the  (220) plane th rough  the  
[111] axis. 

B ~  = cos/5 (sin ~p sin a -- cos ~p cos q cos a) 

- sin/5 cos ~v sin 

Bx~ = sin V~ cos a + cos VJ cos ~ sin 

B~  = sin/5 (sin ~v sin ~ -  cos ~ cos q cos ~) 

+ cos/5 cos ~v sin 

B~, = - cos/5 (sin y~ sin a + sin ~v cos ~ cos ~) 

- sin/5 sin ~v sin 

B~¢ = - cos v 2 cos ~ + sin ~v cos q~ sin 

B~  = - sin/5 (cos v 2 sin ~ + sin v 2 cos q cos a) 

+ cos/5 sin V~ sin 

B~, = - sin/5 cos q + cos/5 sin ~ cos 

B~,~ = - sin q~ sin ~x 

B~¢ = cos/5 cos (p + sin/5 sin q~ cos a . (16) 

F rom these formulae  one obtains  Aka from Bkc by  
pu t t ing  s in /5=  -- 1/(2/3), cos/5= 1/(1/3), Akb and  A~c 
from A~a by wri t ing respectively a + 2:z/3 and  c~ - 2~/3 
ins tead  of c~. 

We are now ready  to wri te  down (8) in t e rms  of 
the  components  of A and  B;  if b' and  d' are the  
absolute values of the  vectors b '  and  d '  and  the  
Bragg angle O is given by  t an  O=b'/d '  we have 
(m=z  only):  

( w/ac e b '3) dA Idl = ts ~.o) + s ~(z)~ kl, xxFxx  kl, yylJyy] 

x [B~,~Bk,~BI,7 + cotan 20(Bz~Bk~Bz:- 2B~Bk~BI,7)]. 

(17) 

For  the  evaluat ion of (8) we wan t  the components 
of A and  B in terms of angles. Fig. 2 shows t h a t  the  

/' /¢~/  

\ / 

/ 
/ 

/ 
/ . 

Fig. 3. Or ien ta t ion  of the  (~, 7, ~) sys t em with  respect  to 
the  cubic axes  (a, b, c). 

[111] axis of the  crystal  is assumed to make  an angle q~ 
with the  z axis in a plane (the z - u  plane) t h a t  makes  
an  angle ~v with  the  x - z  plane. The (220) plane, in 
which d lies, makes  an  angle a wi th  the z - u  plane. 
The angle/5, also given in Fig. 3 t h a t  shows the cubic 
axes, is the  angle between the ~ direction ( =  d '  direc- 
tion) and  the [111] axis. Then we have  

E v a l u a t i o n  w h e n  ~p i s  z e r o  o r  s m a l l  

I f  the  [111] axis is perpendicular  to the surface, q~=0 
and  we have,  if Z(k ,  l, m, n)= ~V AkgA~gAmgAng 

g 

Z(x, x, x, x) = Z(y, y, y, y) = 1/2 

X(x, y, x, x) = Z(x,  y, y, y) = 0 
2:(y, y, x, x) = ~W(x, x, y, y) = 1/6 

2:(x, z, x, x) = - Z ' ( x ,  z, y, y) = (l/2/6) cos3 (c~ + 9) 

Z'(y, z, x, x) = - • ( y ,  z, y, y) = (1/2/6) s i n 3 ( a + y j ) .  

(18) 

I t  follows t h a t  the  expression in equat ion (17) is 

(17)=2  cotan 2 0  cos/5 cos ( a +  yJ) sin ( a +  ~v) 

× C~ (z) (z) 2K/3) s i n / 5 -  (K ~/2/3) cos/5] ,~xx - Py~)[(11 - 12 + 

(19) 

Thus if a (220) plane is parallel  to a direction of 
stress (cos ( a + y : )  or s in(c~+v/)  zero) no reduct ion 
of in tens i ty  on bending will be observed for X- rays  
anomalously  t r an smi t t ed  along t h a t  plane. For  other  
values of a +  ~o there will be a decrease on bending, 
except  for t h a t  direction of propagat ion,  i.e. t h a t  
value of fl for which the factor  in the square brackets  
in (19) vanishes. In  t h a t  case the remaining in tens i ty  
dis t r ibut ion shows the  apparen t  threefold s y m m e t r y  
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observed b y  van  Bommel.  We shall  re turn  to this  
point  in  the discussion. 

For ~0 = 0 it  also follows tha t  

exz= (I1 + K/2)p~Z)~ + ( I 9 -  K/6)p~)y 

eyy=(lp.-K/6)p~)~ + (I1 + K/2)p(~ 

e~y=0 (20) 

from which the shape of the surface can be calculated 
by  (9). I t  is seen tha t  for ~ = 0 the geometrical  direc- 
t ion of bending in  our point  Q coincides with the 
directions of stress. 

If  ~0 is small ,  we have to the first  order in ~0: 

exy (K~/2/6) sin ~ p(~) 7 ~ .  y y  

× [sin 3 (c~ + yJ) cos ~0 + 3 cos 3 (a + yJ) sin F] 

- ( g  v2/6) sin ~o. p(~)z 

× [cos 3 (a + yJ) s i n F + 3  sin 3 (a + v2) cos yJ ] (21) 

and  the smal l  angle between the direction of stress 
and the direct ion of bending is exy(I1 - I2 + 2K/3)-1 

For smal l  ~ i t  is of some interest  to evaluate  (17) 
for the case sin ( a + y ~ ) = 0 ,  or cos ( a+y~)=0 .  We give 
the results  for the case in which ~(~) vanishes. If  t ' £ £  

sin ( a +  ~o)=0 

(17) = - (~(I1 + K/2)p(~ ) -  (5 cotan ~ ~ ( z )  ~ t . . y y  

× [ 2 I I - - I 2 + K / 3 - - K V 2  cosfl s inf l  
- 2 sin e f l ( I ~ -  I9 + K/4) ] .  (22) 

If cos ( a + y ~ ) = 0  

(17) = - ~ ( I 1 -  K / 6 ) p ~  ) -  ~ cotan ~ D~(z) ~ z - y y  

× [I~.- g / 3  + (K  V2/3) cos fl sin fl 

+ sin 2 fl(I1 - I~ + 5K/6)] .  (23) 

In  both cases the effect is proportional  to (~ = 
sin a sin ~, being the angle between the (220) plane 
and the normal  to the surface. Case I applies to the 
case discussed in a previous paper  (Penning & Polder, 
1961), and  it  m a y  serve to correct equat ion (34) of 
tha t  paper  for the effect of cubic anisotropy. Since 

is small  one puts  cos 2 ~ =  1 in tha t  equation. The 
anisotropy will  then  be accounted for if one replaces 
1 + ~ = 1 - I~./I1 by 1 + v -  K/(6I~). To prove this, one 
has to use the iden t i ty  R - ~ = ( I ~ + K / 2 ~  (~) which ~ y y ,  

follows from (20). 

va r ian t  for x ~ - x ,  y - ~ - y ,  z - + - z )  the solution 
of the bending problem mus t  be symmetr ica l  for 
(x -+ - x ,  y --> - y ) ,  i.e. ~(k) ~(k) and  p(k) are all  zero z - 'xx ,  ~ x y ,  y y  

for Ic=x or y in the point  Q, while p(z) survives. 
This, together wi th  the boundary  condition pz~=O, 

gives the stress f ield assumed to be present  in our 
paper. However, the tensor s is not  invar ian t  for 
(x -~ - x ,  y -~ - y ) ,  since according to (15) the t e rm 
Z(k lmn)  is not, if the  set (blmn) contains the subscript  
z an  odd number  of t imes. 

Let  us, therefore, for the t ime being, ignore these 
terms and assume tha t  we have solved the elastic 
problem for a hypothet ica l  mater ia l  characterized by  
an s tensor wi thout  the odd terms. The stress tensor 
will  then  be of the type  assumed in this  paper,  i.e. 
i t  contains only p~) and  p(Z) in Q. If the stress tensor yy 
is now thought  to be kept  fixed, the  odd terms in  s 
will, in the real material ,  produce an  addi t ional  strain,  
which, since pz~ = 0, will  everywhere consist of Sxz and 
sy~ only. The addi t ional  s t ra in  can be described by  
an  addi t ional  displacement  in the plane of the specimen 
and is proport ional  to z everywhere.  The addi t ional  
displacement  does not change the shape of the bent  
surface, nor tha t  of the specimen and therefore does 
not interfere wi th  the boundary  conditions of the 
elastic problem, at  least  not for a th in  specimen. 
Therefore we conclude tha t  the stress f ield for the 
real mater ia l  will  be the same as tha t  for the  
hypothet ica l  mater ia l  and of the type  as assumed in  
discussing the elastic deformation. 

D i s c u s s i o n  

In  the exper iments  by  van  Bommel  a point  source of 
X-rays is located at  a dis tance u from the front  
surface of a ge rmanium slice which has the [111] axis 
perpendicular  to the surface. A photographic plate,  
paral lel  to the surface of the specimen, is present  at  
a distance 1 from the back surface of the slice. 

The distance between source and  plate  is u + w + l, 
if w is the thickness of the specimen. We define an  
X, Y system of axes on the plate,  the origin being the  
geometrical  projection of the source on the plate,  
the X axis being paral lel  to a given (220) plane 
through the [111] axis. An X-ray  tha t  is anomalous ly  
t r ansmi t t ed  through the crystal  having a ~ direction 
defined by  the angle fl as in Fig. 3, will arrive on the  

plate  wi th  the X coordinate given by  

T h e  s t r e s s  p a t t e r n  

We assume tha t  the bending moment  is appl ied in 
a symmetr ica l  manner  on a symmetr ica l  specimen, 
so tha t  Q can be located in  a point,  f ixed to the 
specimen, tha t  shows s y m m e t r y  with respect to the 
inversion operat ion (x-~  - x ,  y ~ - y ,  z ~ z). If  the 
elastic tensor s is invar ian t  also for this  operation 
(which implies invar iance for z -+  - z ,  since s is in- 

X / ( u  + w +  l ) = t a u  fl . (24) 

The total  length of the projection of the X-ray  pa th  
on the (220) plane is therefore ( u + w + l ) / c o s f l .  
Between the source and the front  surface the X-ray  
t ravels  at the Bragg angle O with the  (220) p lane;  
in the crystal  i t  t ravels  paral le l  to t ha t  p lane;  at  
the back surface it  splits into a beam at  an  angle O 
(the t r ansmi t t ed  ray) and  one at an angle - O  (the 
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reflected ray). The Y coordinates on the plate of 
these beams are then given respectively by:  

Y = (u +_ l) t an  O/cos ft .  (25) 

Eliminating fl from (24) and (25) we have 

t a n 2 f l = X 2 / ( u + w + l ) 2 =  - 1 + y2co tan20 / (u  -+ l) 2. (26) 

Equat ion (26) defines four curved lines on the plate, 
two being caused by the t ransmit ted and reflected 
beams we have described, the other two being caused 
by an X-ray emerging from the source at  an a n g l e - O  
with the (220) plane. Actually one finds three sets 
of four lines on the plate as there are three (220) planes 
through our [111] axis. The picture shows sixfold 
symmetry.  

If u = 0 ,  three sets of two lines will appear. We 
shall consider what happens in this case if the crystal 
is bent in such a way tha t  none of the three (220) 
planes is perpendicular or parallel to the direction of 
stress. According to equation (19) anomalous trans- 
mission will survive bending only for rays with a 
fl value given by 

tan  f l = K V 2 1 3 ( I i - - I 2 +  2K/3 ) . (27) 

Let us insert numerical values for germanium. We 
have for Cu Ka  radiation tan  0 = 0.415, I2/I1 = - 0.273 
and K / I I = - 0 . 5 0 8  as follows from the elastic data.* 
Thus tan  fl = - 0 . 2 5 6 .  Neglecting w with respect to 1 
in (26) we find two values for Y and one for X 
(cf. equation (24)) such tha t  Y / X =  +1.67. Since 
arctan (1.67)=59 ° the surviving intensity, acciden- 
tally, occurs very nearly at  the intersection of the 
lines resulting from different (220) planes (Fig. 4). 
The resulting picture now shows (apparent) threefold 
symmetry.  The threefold symmetry  is only apparent, 
since, if one of the three planes is either perpendicular 

* T h e  c o n v e n t i o n a l  e las t i c  c o n s t a n t s  a r e :  

S u = 11, $12 = 12, 844 = 2(11 - 12 + K )  . 

% 

Fig.  4. P r i n c i p a l  f e a t u r e s  of t h e  p i c t u r e  of t h e  p h o t o g r a p h i c  
p l a t e  in v a n  B o m m e l ' s  e x p e r i m e n t .  

or parallel to the stress direction, the intensi ty of the 
corresponding pair of lines will not decrease, while 
for the other two pairs only the spots with the correct 
fl value will survive. 

The major consequences of the theory 
Surviving pairs of lines (or four lines if u # 0 )  for 

two directions of stress, surviving intensi ty near the 
intersections with threefold symmetry  for other 
directions of stress, and the sign of fl, have all been 
found by  van Bommel (1964). In part icular  the sign 
of fl is uniquely negative and it has been verified to 
be correct by the inspection of the relation between 
the observed threefold symmetry  and the crystal 
orientation. 

The good agreement between theory and experiment 
shows the usefulness of the theoretical approach as 
given by Penning & Polder (1961) even in quite 
complicated cases. 
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